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A localized, insoluble, surfactant monolayer, spreading under the action of surface-
tension gradients over a thin liquid film, has at its leading edge an integrable stress
singularity which renders conventional thin-film approximations locally non-uniform.
Here high-Reynolds-number asymptotics are used to explore the quasi-steady two-
dimensional developing flow near the monolayer tip, assuming that gravity keeps the
free surface almost flat, that weak ‘contaminant’ surfactant regularizes the singularity
and that the monolayer spreads fast enough for inertial effects to be important in
a region which is long compared to the film depth but which is short compared
to the length of the monolayer. It is shown how downward displacement of the
inviscid core flow by the subsurface viscous boundary layer yields a non-uniform
pressure distribution which, when the monolayer is spreading fast enough for cross-
stream pressure gradients to be significant at its tip, creates a short free-surface hump
which is the thin-film version of a Reynolds ridge. The ridge and other singular
flow structures are smoothed as the monolayer slows and levels of contaminant
are increased. The conditions under which lubrication theory provides a uniformly
accurate approximation for this class of surfactant-spreading flows are established.

1. Introduction

An insoluble surface-active monolayer, placed on the free surface of a layer of
viscous liquid, may spread spontaneously under the action of surface tension gradients.
Models of spreading are typically based either upon lubrication theory (when the
length L* of the monolayer greatly exceeds the fluid depth H*, e.g. Borgas & Grotberg
1988; Jensen & Grotberg 1992) or upon boundary-layer theory (if the monolayer
spreads sufficiently rapidly and L* < H*, e.g. Foda & Cox 1980; Jensen 1995). If
surface diffusion is negligible and the monolayer is localized, an integrable stress
singularity arises at the monolayer’s rigid leading edge, a structure which cannot
be properly resolved within either type of long-wavelength approximation. In Part
1 of this study (Jensen & Halpern 1998), it was shown how the singularity may
render lubrication theory for a slowly-spreading localized monolayer non-uniform
over an O(H") lengthscale at the monolayer tip, and the leading-order Stokes flow
at the tip was computed. It was demonstrated that, if gravity is sufficiently strong to
suppress film disturbances, a series of Moffatt vortices may be generated in the fluid
layer ahead of the monolayer, and the nonlinear regularization of the singularity by
‘contaminant’ surfactant ahead of the spreading monolayer was described.

Since monolayers typically slow as they spread, the Stokes-flow limit assumed in
Part 1 will only be valid sufficiently late in spreading for inertial effects to be negligible.
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The purpose of the present paper is to examine the effect of the stress singularity on
the structure of the flow near the monolayer tip at earlier times, when the monolayer
is long compared to the film depth (so that e = H*/L* < 1), but the tip is advancing
sufficiently rapidly for both viscous and inertial forces to be locally dominant. The
analysis is based on the following three key assumptions. First, gravity is assumed to
be sufficiently strong for film deformations over O(L") lengthscales to be suppressed
(the ‘flat-film” approximation described in Part 1); this requires ¥ = p*g*H*?/S; > 1,
where p* is the density of the fluid layer, g* the acceleration due to gravity and S;
the spreading coefficient of the monolayer (i.e. the surface-tension difference driving
the spreading flow). In this limit, which is readily achieved experimentally, there is a
‘return’ flow beneath most of the monolayer; this flow is bidirectional in the laboratory
frame. Second, since (as is typical of developing flows, e.g. Van Dyke 1971) inertial
effects operate at the monolayer tip over a lengthscale O(H*Z) (where the Reynolds
number #Z = p*H*V*/u’*, u* is the fluid’s viscosity and V* is the speed of advance
of the monolayer tip), we assume 1 < # < 1/e, so that inertia is dominant in a
region long compared to the film depth but short compared to the monolayer length;
we may then approximate much of the quasi-steady flow in this region using the
boundary-layer equations. Third, we introduce weak ‘contaminant’ surfactant ahead
of the spreading monolayer, which regularizes the stress singularity. The contaminant
concentration is expressed in terms of an inverse capillary number § = S /(V"u"),
where S (< S;) is the surface-tension difference between a clean and a contaminated
interface. Since contaminant effects balance viscous forces at the monolayer tip over
a lengthscale §H* (Jensen & Grotberg 1992; Part 1), we focus here primarily on the
limit 1 <€ § < 1/e, again restricting attention to quasi-steady flows having horizontal
lengthscales substantially shorter than L*.

If %> 1,1< %< 1/e and 7 = 0, the leading edge of a localized monolayer acts
like a rigid plate so that beneath its tip is a Blasius boundary layer, illustrated as region
I in figure 1. Since restoring forces prevent vertical displacement of the free surface,
the relatively stagnant fluid (in the frame of the monolayer tip) in the subsurface
boundary layer displaces the oncoming inviscid flow in the core of the fluid layer
downwards and accelerates it (region II), generating a streamwise pressure gradient
which drives a weaker viscous boundary layer along the lower rigid plane (region
III). These boundary layers grow in thickness as the distance from the monolayer
tip increases, merge (in region 1V) and quickly develop into a viscous (return) flow
described by lubrication theory. Similar flow structures have been identified in studies
of entry flows in plane slider bearings (e.g. Tuck & Bentwich 1983; Wilson & Duffy
1998) and in high-Reynolds-number flows in channels with splitter plates (Smith
1977; Badr et al. 1985). Indeed, the flow sketched in figure 1 is exactly equivalent
to that in which a semi-infinite splitter plate moves steadily down the centre of a
channel, but surprisingly this problem does not appear to have been treated previously
for non-zero Reynolds numbers. Some key aspects of the developing-flow problem
illustrated in figure 1 are described in §3 below.

Weak contaminant is then introduced ahead of the monolayer, allowing us to
construct asymptotically uniform solutions that show a non-trivial interaction between
inertia, contaminant and the (weakened) viscous stress singularity. With contaminant
present, the monolayer no longer has a well-defined leading edge; there is instead
a smooth transition between stress-free conditions (as x — —oo) and a nearly rigid
monolayer (as x — oo); the lengthscale of this transition is controlled by the value
of 7. It will be shown in §4 how, provided § is not too large, the strong downward
displacement of the core flow beneath the tip of the nearly-rigid section of the
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FIGURE 1. (a) The asymptotic quasi-steady flow structure at the tip of a localized monolayer on a
flat film at high Reynolds numbers (# > 1), in the frame in which the monolayer’s rigid tip (lying
along x > 0, y = 1) is stationary; the plane wall at y = 0 moves from left to right. Lengths are
scaled on the film depth H*. A plug flow beneath a clean, stress-free interface (upstream, x — —o0)
develops into a return flow beneath a rigid interface (downstream). Region I is a nonlinear Blasius
boundary layer, II is the inviscid, accelerating core flow, III is a linear boundary layer; these merge
into region IV where x = O(%). The surface shear stress is singular within region V; vertical pressure
variations in the core appear at leading order only within region VI.

monolayer may generate an inviscid upstream response in the core, which manifests
itself as a short region of elevated pressure and correspondingly a free-surface hump,
of length O(H"), which is the thin-film analogue of a Thoreau-Langton—Reynolds
ridge; this ridge is a well-known feature of surfactant-driven flows of deep layers (see
for example Scott 1982 and references therein), but it has not previously been described
in the thin-film context. We compute it here by solving a canonical boundary-
layer problem (first treated approximately by Harper & Dixon 1974) in which weak
contaminant controls the structure of the leading edge of the Blasius boundary layer;
the hump shape is then found by solving an elliptic problem for inviscid perturbations
to the oncoming core flow. As levels of contaminant are increased, the stress singularity
at the monolayer tip is smoothed over a growing lengthscale, the ridge vanishes and
ultimately inertial effects are dominated by viscous forces. This evolution is explored in
§5 using a simple integral approximation of the appropriate boundary-layer equations.
Results are summarized in §6, where conditions for the existence of the Reynolds
ridge and of the peak in shear stress are identified, and the validity of the different
asymptotic approximations in Parts 1 and 2 of this study is discussed.

2. The model

Suppose a dilute surfactant monolayer of length L* advances over a viscous
fluid layer of depth H", density p* and viscosity u*, so that the monolayer’s tip, when
resolved using thin-film theory over a lengthscale L* > H", is rigid and advances with
steady speed V*. An inviscid gas above the fluid layer has no influence on the motion;
gravity is assumed to be sufficiently strong to suppress signficant film deformations.
Far ahead of the monolayer is a contaminant surfactant having concentration I";, = 0.
We work in the frame of the advancing monolayer, choosing a coordinate system as
shown in figure 1, which illustrates the flow structure in the case I'; = 0. Scaling
velocities on V", lengths on H", the pressure in excess of hydrostatic on u*V*/H",
the surfactant concentration on u*V*/A* (where A* = —do”*/dI"'* > 0 is the surface
activity, assumed constant), the quasi-steady velocity field u(x, y) = (u,v) and pressure
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field p(x, y) satisfy, in —o0o < x <00, 0 < y < 1,
1
Veu=0, Ru-Vu=—Vp+Vu u(x,0)=(1,0), / udy =1, (2.1a—d)
0

where Z = p*V*H"/u*. In terms of a streamfunction y(x, y), for which u = (¥y, —x),
the uniform-flux condition (2.1d) implies that yp(x,0) = 0, w(x, 1) = 1. The free-surface
boundary conditions at y = 1 are

v=0 u,=-I,, Tu=7. 2.2a—c
V Y

These are, respectively, the kinematic condition, the tangential stress condition and
the transport equation for the surfactant concentration I'(x). The latter has been
integrated so that the surface flux of surfactant is uniform, with a value set by
the strength of the dimensionless contaminant concentration § = I';> A*/(p" V™) far
upstream, ahead of the advancing monolayer. For simplicity, surface diffusion is
neglected. At either end of the domain, the flow satisfies, at leading order,

4x —6x y— (3 —y?) for x — +oo

7s 0, y for x — —o0.

Far upstream (x — —oo) the interface is stress free, the pressure is set to zero and
the oncoming velocity profile is an irrotational plug flow. Far downstream beneath
the rigid monolayer is a fully developed return flow. These conditions match onto
leading-order lubrication theory for a monolayer spreading on a flat film, as shown
in detail in Part 1. Note that (2.1)—(2.3) and (2.5) below are identical to equations
(2.15)~(2.18) in Part 1 (with & = 0), except for the change of reference frame. In
the singular limit § = 0, we let x = 0 coincide with the monolayer tip, and then
I' ~4x + Y as x — oo where

Y =— /w[tpyy(x, 1) + 4] dx. (2.4)
0

Lubrication theory then overestimates the monolayer length by an x-distance iY
because it fails to resolve the stress singularity at the monolayer tip.

Since the location of the upper boundary (y = 1) has so far been prescribed, the
normal stress condition does not enter the problem at leading order. However, it can
be used to determine the shape of the perturbed free surface (at y = h(x), say), by
using
h 5 p*g*H*z
h~1+ 2 Y v
as 4 — oo (Part 1), where g* is the gravitational acceleration. Since the speed V" at
which a long monolayer advances is O(eS; /) (Part 1), we may write G =4/e, and
the conditions € < 1, 4 > 1 which ensure that the monolayer is long and flat along
its entire length readily ensure that 4 > 1. Under typical conditions capillary effects
may be neglected (Part 1), as may a small and slowly varying quantity (denoted # in
Part 1) which may be added to h; to ensure matching with an unsteady gravity-driven
flow ahead of the monolayer.

Balancing inertial and viscous terms in (2.1b) assuming u = O(1), and combining
(2.2b,c) with y = O(1), we see the emergence of x-lengthscales of magnitude 2
and § respectively, both of which may be long under the conditions of the model
(1<K %2 < 1/e, 0 < § < 1/e). The boundary-layer equations apply over the long

hy = p(x,1) + 2u,(x, 1) (2.5)
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O(2) lengthscale. Setting x = #x and (u,v,y,p,I') = (12, T/ R, P, RP, @F_), (2.1), (2.2)
with error O(%2%) become

ijlpyi‘ - @)’clﬁyy = _13)? + U_)yyy’ U_)(xa 0) = 07 1/3),()2, O) = 1’ #_’(x, 1) = 15 (26)

with a new parameter, an inverse contaminant Weber number,

7 S5
- 2.7
f @ p*H* V*Z ( )
appearing in the boundary conditions,
ﬁ = ﬁ(x)a I:(x)lpy(xv 1) = jv l/_]yy(x: 1) = _1:)_6 (2.80_(3)

Thus under_suitable conditions, the Navier-Stokes problem (2.1)-(2.3) with two
parameters # and § reduces to a problem for the boundary-layer equations (2.6)—(2.8)
with a single parameter ¢. We explore the limits # =01in §3,0 < ¢ < 1 in §4 and
JZ = 0(1) in §5 below.

3. The developing flow beneath a localized monolayer

The general flow structure in the absence of contaminant (§ = ¢ = 0) is shown
in figure 1, taking x = 0 to be the monolayer tip. A scaling analysis for this
problem may be summarized as follows. For #7' < x < %, a Blasius boundary
layer (region I in figure 1) of thickness O(0) exists beneath the monolayer, where
6 = (x/#)"?. This relatively stagnant region beneath the non-deforming free surface
displaces the oncoming core fluid downwards with speed O((x#)~'/?), and a three-
layer vertical structure develops, with an inviscid, irrotational core flow (region II)
and a weak passive boundary layer on the lower wall, also of thickness O(0) (region
III). Region III arises because the core flow must accelerate as it squeezes beneath
region I, so downstream of the monolayer tip the pressure falls in the streamwise
direction like —#5 = —(x#)"/* (this arises from the balance Zuu, ~ —p in (2.1b)
with u ~ 1 4+ 0(6)). The full Navier-Stokes equations apply in a region of width
O(%~") around the monolayer tip (region V), embedded in which is a viscous stress
singularity of the form discussed in Part 1 (see also Carrier & Lin 1948; van de Vooren
& Dijkstra 1970; Tayler 1973); an O(1) downward flow is generated in this short
region. Within an O(1) distance of the monolayer tip (region VI), vertical pressure
variations of O(2'/?) due to streamline curvature are important in the core, so that
the core flow can exhibit an upstream inviscid response to the oncoming monolayer.
The large pressure fluctations close to the monolayer tip, and those of O(#) further
downstream (where x = O(2)), generate deflections of the surface of at most O(R)%)
(see (2.5)) which remain small provided ¥ > 1, since ¥ = €94 and # < 1/e. For
1 € x < A, the pressure is uniform at leading order across the fluid layer and the
boundary layers remain distinct. For x = O(2), regions I-III merge into region IV,
and the boundary-layer equations (2.6)—(2.8) apply across the entire flow, as is typical
of developing flow problems (e.g. Schlichting 1968). The return-flow profile with a
uniform pressure gradient emerges for x > #.

3.1. The flow in regions I-1V for § =0, 1 K # < 1/e

We can therefore use (2.6)—(2.8) with ¢ = 0, and the classical methods of Schlichting
(1968, where a more detailed account of the techniques used here may be found),
Smith (1977) and Badr et al. (1985), to describe much of the developing flow shown
in figure 1. For a similar approach to a related slider-bearing problem see Wilson &
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Duffy (1998). The three -layer structure of regions I-I1I emerges as X — 0. The upper
boundary layer in #~' <« ¥ < 1 is obtained by writing {(X,y) = 1 — X'/2F(%, 1),
n = (1 —y)/x'/2, so that (2.6) becomes

X (F,Fys — FyFs) — YFF,, = —xpg + Fy, (3.1)

with F(x,0) = 0, F,(X,0) = 0. The lower boundary layer has §(%,y) = x'/2F(x, ),
A = y/x"/2, which yields (3.1) with F replaced by F, subject to F(x,0) = 0, F;4(,0) = 1.
In each boundary layer we must apply suitable conditions to match with the core
flow.

We expand in powers of x'/2, so that in the core (region II)

P =Ho(y) + X2, (1) + 0(x),  p=x"h+0(X) (3.2a,b)
and I' = /2T o+xI" | +0(x*?). It follows from (2.6)—(2.8) that (, = y (the oncoming
plug flow) and {; = —p,y (an inviscid correction driven by the Blasius boundary

layer). In the upper boundary layer (region I), we set F = Fy(n) + x'/>Fi(n) + O(X),
so that (3.1) gives

—1FF) =F; and Y(F(F{—FoF{)—FF} =—1p,+ FY, (3.3a,b)

with F;(0) = 0, F{(0) = 0 for i = 0, 1. The leading-order contribution Fj is the usual
Blasius function. In the far field, Fy ~ # — 2C as 1 — o0, so that at the outer edge
of the Blasius boundary layer is an induced downward flow with vertical velocity
—C/x'2, where C ~ 0.8604. Matching with the induced core flow , implies that
Py = —2C. The streamfunction at next order, F, driven by the induced pressure
gradient in (3.3b), is also readily computed (this was done using a simple finite-
difference method), applying F;, ~ —130 as # — oo. The surfactant distribution then
satisfies 'y = 2FJ(0) ~ 0.66412, I'; = F/(0) ~ 1.8967. In the lower boundary
layer (reggon HI) we expand using F =7+ xl/zFl(n) ..., so that (3.1) yields
1F’ — 211F” = 2p0+F”’, with F(0) = 0, F* 1(0) =0 and F 1) > —p,y as § — oo. This
is a linear self-similar boundary layer, driven by the external pressure gradient; F,
is also readily determined (again a finite-difference method was used). A composite
expression for the streamfunction can then be constructed,

B(%y) = 1+ %72 [poy — Fo(n)] + [ﬁl(ﬁ)—Fl(n)} ..oas 550,  (34)

from which the leading-order velocity profile can be computed. Some developing pro-
files for 10~* < X < 0.005 are shown in figure 2, illustrating how the boundary layers
thicken very rapidly as X increases. These profiles for small X are more illustrative
than realistic, since the condition x = %% > 1 implicit in this approximation puts
stringent and possibly impractical bounds on acceptable Reynolds numbers.

Further downstream in region IV, we can perturb about the fully-developed return
flow, Y, (y) = y — (y* — ¥?), by setting p = p..(y) + e *P(y), where Re (&) > 0 and
is sufficiently large to ensure that e ** < 1. Then (2.6) becomes an Orr-Sommerfeld
problem

¢yyyy + &chy(f)yy - &wocyyyd) =0, ¢0)=¢(1)= d’y(o) = d)y(l) =0. (3.5)
The most slowly decaying eigenvalue for the return-flow case has been given by
Stocker & Duck (1995) as & = 46.077 in a channel of double the width. In finite-

difference computations we found & = 48.3349. Three examples of the perturbed
return flow are shown with broken lines in figure 2; in the figure, ¢,,(X,0) = 1 was
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FIGURE 2. The return-flow profile (solid, u = 1—3y>42y) is shown together with eight boundary-layer
profiles (solid lines, see (3.4)), corresponding to equal X-spacings between X = 10~* and 0.005, and
with three downstream perturbations (broken lines, see (3.5)); the latter are separated by X-distances
(log2)/8 ~ 0.0143.

chosen to normalize the eigenfunction, and ., — k¢, was plotted for k = 0.1, 0.2
and 0.4, corresponding to changes in X between each curve of 0.0143. The large value
of & confirms that the flow development is very rapid on the X-lengthscale.

The strong variation in the core pressure in regions II and IV perturbs the free
surface. From the normal stress condition (2.2b), h; ~ py(#x)"/? for 1 < x < X,
where p, & —1.721; here the pressure distribution is controlled by inertial effects
as the core flow accelerates. Further away from the monolayer tip, once x > 2,
a linearly diminishing pressure distribution is required to balance viscous forces, so
that h; ~ —6x + C, for some constant C, to match onto its distribution given by
lubrication theory (see Part 1, equation 2.8). Computation of Cis _beyond the scope
of the present study. The intermediate flow structure, for x = O(Z), connecting the
two approximations in figure 2 may be obtained by solving (2.6)—(2.8) numerically.
However, since the development length is so short on the X-lengthscale, very high
Reynolds numbers are likely to be required for there to be sufficiently great separation
of lengthscales to ensure accuracy of the asymptotic model. This implies for example
that the approx1mat10n Y ~ Y% for the monolayer length correction (see (2.4)), where

fo [$,,(X, 1) + 4] dX, is likely to be poor for modest values of . (The value
of Y may be estimated by patching, at X = Xo, say, the two asymptotic expressions
I' ~x'’T'y+xI; and T’ ~ 4% + Y + Ae™* for some A; ensuring continuity of I’
and I'; we found that 0.06 < Y < 0.09 for 0.05 < %, < 0.02.) The constraints of
the present problem (1 < # < 1/€) put an upper bound on £, such that in most
practical circumstances a solution of the singular Navier—Stokes problem (2.1)—(2.3)
with ¥ = 0 is likely to be more appropriate, and would also reveal the pressure
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FIGURE 3. (a) The asymptotic flow structure with contaminant, when 1 < § < @ (b) A sketch of the
corresponding free-surface pressure distribution, which is monotonic for § > #'?, but which has a
local hump, generating a Reynolds ridge, when ¥ = O(#'/?). The leading-order approximations for
p(x,1) in region II and as x — oo are also shown.

distribution close to the monolayer tip. We leave such problems for a future study,
since substantial progress can instead be made by introducing weak contaminant
ahead of the monolayer.

4. Contaminant effects in the limit 1 < § < # < 1/e

Suppose now that instead of advancing over a clean interface (as in figure 1), con-
taminant surfactant, represented by the parameter § in (2.2)—(2.3), is present ahead
of the advancing monolayer, smoothing the stress singularity. Again, we start by
summarizing the results of a scaling analysis. For 1 < 7 < £ there is a strong
interaction between the leading edge of the Blasius boundary layer and the contam-
inant; the flow structure in this case is shown in figure 3(a), and sketches of the two
qualitatively distinct free-surface pressure distributions that may arise are shown in
figure 3(b). Regions V and VI in figure 1 are now replaced by regions V' and VI’
respectively; regions I-IV (and the analysis of §3.1) are unaffected at leading order
by the presence of contaminant. Seeking a dominant balance between Zuu, and u,,
in (2.1b) and between the terms in (2.2), with u = O(1) and I' = O(j), we obtain
the dimensions of region V', which has length %/% and a much shorter depth §/%;
the local maximum of shear stress in this region is of magnitude %/§. Again there
is downward displacement of fluid into region VI’ (with weak vertical velocity of
0(1/%)), generating pressure fluctuations of O(§) in the core, and a weak viscous
boundary layer develops on the lower wall. There is no leading-order cross-stream
pressure gradient anywhere in the core provided region VI’ is long, i.e. 2> < § < £,
in which case the entire developing flow may be described by the boundary-layer
equations (2.6)—(2.8) with # < 1; this singular limit is investigated in §4.1 below.
In this case it turns out that the pressure falls monotonically with x, as sketched in
figure 3(b); the pressure distribution in region VI’ (and region II) is controlled by
inertial forces, being related directly to the displacement thickness of the boundary
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layer in region V' (and region I respectively); it evolves towards the linear distribu-
tion predicted by lubrication theory as x — oo, where viscous forces are dominant. If
5 = O(#'?), however, there is a short-lengthscale upstream response of the inviscid
core flow to the oncoming monolayer associated with horizontal and vertical pressure
fluctuations of O(#£'/?) in region VI'. It will be demonstrated in §4.2 below that as
a result the free-surface pressure distribution has a local hump across region VI
(also sketched in figure 3b), which generates the thin-film version of a Reynolds
ridge.

If § = O(£), regions I-VI' in figure 3 are no longer distinct, and the entire flow
varies smoothly over a long # lengthscale. The corresponding solutions of (2.6)—
(2.8) with # = O(1) are given in §5 below. If # < § < 1/e, then contaminant
eliminates inertial effects altogether and the flow is purely viscous, being governed by
the lubrication-theory solution given in figure 2 of Part 1. At the opposite extreme,
if 9 = O(1) or smaller, a Navier—Stokes solution is required where x = O(1), which
is beyond the scope of the present study. We proceed, then, by considering the
case in which the smoothing effect of contaminant is just powerful enough for the
boundary-layer equations to apply throughout the entire flow.

4.1. The limit 1 K R'* <7< R < 1/e: region V'
If # =7/% < 1, (2.6)~(2.8) reduce to the developing-flow problem considered in §3.1
for X = O(1), but a new three-layer structure emerges as X — 0 with x = O(%/%). We
therefore rescale (2.6)—(2.8), setting X = #°X, I’ = jf, p = #p. The upper boundary
layer (region V' in figure 3a) is of the form ¢ = 1 — #{(X,7%) where 571 = (1 — y)/ 7.
Expanding, with (i, Z),f ) = (Yo, Pos I o) + O(¢), the leading-order problem in this
region becomes

PoiPons — Postoii = Do Woii(%,0) = Tox(X), oy (X, 0) (%) = 1 (4.1)

with Po(X,0) = 0 and p — 77 —D(X) as n — oo, where D is a function representing the
upper boundary-layer’s displacement thickness. Far upstream in region V', (o — 7
and I'c — 1; far downstream, with X > 1, the upper boundary layer in region V'
approaches a self-similar Blasius form (with I'g > 1 > g;(X, 1)), to match onto
region I of the developing flow (3.4).

The boundary-layer problem (4.1) arises also at the leading edge of a monolayer
spreading on deep fluid, and approximate solutions have been presented in this
context by Harper & Dixon (1974). We solved this canonical boundary-layer problem
numerically, exploiting the von Mises transformation (described, for example, in
Schlichting 1968). If 1o;(X,17) = U(X, o), (4.1) becomes a nonlinear diffusion equation

Us = (UUg), > UUg(%0) = Tox(¥),  U(X0)I(X) = 1 (4.2)

with U — 1 as ¢y — oco. Integration of (4.2) is straightforward using finite differences
in Py and an implicit timestepping procedure; one can march in the direction of
increasing X, using

2-12) 22 -1)

with X — —oo as an upstream initial condition. By setting the coefficient of the O(e¥)
term to unity we fix the origin of the solution. It was verified that numerical results
were independent of the location of the upstream starting point.

U~1—¢e“h4 ( + ;e—zlf’v) e, To~1+4¢e"— (
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FIGURE 4. Solid lines show numerical solutions of (4.1), showing (a) surface velocity 1Po;(X,0), sur-
factant concentration I o(X) and displacement thickness b(ic); (b) —Pox(X,0) (surface compression),
IV"O;((SC) (surface shear stress) and bg()vc) (induced downward flow). Also shown in (a) (dotted) is the
integral approximation (4.3a—d), and in (b) (dashed) the downstream asymptotes of I [Fy(0)x~1/2]
and Dy [CX~'/2].

The solution of (4.1), (4.2) is shown with solid lines in figure 4. Figure 4(a) shows
how the surface velocity decreases as the surfactant concentration and displacement
thickness D(X) increase. There are sharp peaks (figure 4b) in the surface shear stress
(at X ~ —0.48), in the surface compression (at X ~ 1.5) and in the induced flow
normal to the free surface Dx(X) (at X &~ 3.7). The latter drives an inviscid flow in the
core (region VI in figure 3a): setting ¢ = y + #9,(X,y) + O(#?), (2.6)—~(2.8) imply
that , = —yp(X); matching implies that p(X) = —D(X), so the core pressure falls
monotonically along region VI’ (as sketched in figure 3b), provided this region is long.
The non-uniform pressure_ distribution in the core again gives rise to a deflection
of the free surface, with hy = —jD(X) locally (from (2.5)), which remains a small
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perturbation provided 4 < 1. Given the region VI’ pressure distribution p(X), one
can in principle determine the flow in the lower boundary layer along y = 0, but this
is not necessary here. Figure 4(a) also shows how the numerical solution compares
with the integral approximation of Harper & Dixon (1974) which, by assuming an
exponential velocity profile, gives

v 1 1/1 . Y 1 +« 2(1-b)
== 1 -1, ~b, Ig~-, D=~ , (4.3a—d
o= (1) e [5 (1)) = P by B0
and thereby captures the correct leadmg order exponential decay as X — —oo and the
appropriate scaling D oc X172 as X — 0. Figure 4(a) shows that (4.3) provides a good
qualitative approximation to the exact solution. Figure 4(b) shows how the solution

of (4.1) matches onto the Blasius solution as X — oo, with a slowly decaying O(x~3/?)
correction.

4.2. The Reynolds ridge: region VI with 1 < 5 ~ #'/> < 1/e
We now relax the assumption that § > #'2 to allow for cross-stream pressure
gradients in region VI, but retain the condition 7 > 1, ensuring that the downward
vertical flow generated by region V' is weak. It is convenient to introduce the
parameter .# = 2/ For ./ = O(1), the upper boundary layer (region V') remains
exactly as described in §4.1 (figure 4), generating an O(1/7) downward flow, but the
response of the core to its forcing by the upper boundary layer becomes non-local.
We shall see that the result is an inertially-driven elevation of the free surface, which
is the thin-film analogue of a Reynolds ridge.
To describe inviscid perturbations to the core flow in region VI, we rescale (2.1)-

(2.2), setting u =14+ U/5, p=P/.¢ and v = V/§. Then the leading-order equations
in the core on an O(1) lengthscale become

U+ V,=0, U,=—P, Vi=-P, V(x00=0, V(x,1)=0(ux), (44a-e)

where ¥y(.#x) = U,(X) = —Dx(X) (as shown in figure 4b). Thus V(x,y) satisfies
Laplace’s equation subject to (4.4d,e). We seek the solution for V in terms of a Green’s
function, so that V(x y) = f G(x s, y)vs(%s) ds, where V2G = 0, G(x 0)=0, G—0

as x — +oo and G(x 1) = o6(x). Then, since V = P, we can compute the pressure
directly using G,

px,y) = — /_ G,(x — s,y)D(Ms) ds, (4.5)

where p = .#P = p/ 7. The appropriate Green’s function may be shown using Fourier
transforms to be (Sneddon 1974)

siny
2(coshtx 4 cosmy)’

o0
G(x,y) = Z(—l)”“e_””'x‘ sinnmy = (4.6)
n=1
To determine the corresponding free-surface displacement, (4.5) was evaluated in the
singular limit y — 1. The integral was computed numerically in two ways: using
(4.5) directly, keeping y < 1, and verifying that this was in close agreement with the
following asymptotic result:

D(#t)dt  2D(ux)
p(x, 1) = lim lé (/ /H) coshr—0—1_ o | &7

Results were also verified by constructing an asymptotic approximation to (4.7)
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FIGURE 5. The Reynolds ridge, showing p(%,1) = p/7 (see (4.7)) versus X = .#x for .M = R/7* =0
(long-dash, p = —D(X)), .# = 2 (dotted), .# = 5 (short-dash) and .# = 10 (solid).

for small .7 (the limit in which region VI is long enough for cross-stream pressure
fluctuations to be weak). With x = X/.#,u = 14+ #i;, v = 0/§ and taking 1 < § < %,
(4.4a—e) becomes

Ell}c + ﬁy = 07 al)? = _Iv).vx‘a ﬂzﬁi = _pya b()vc, O) = 09 5(5{69 1) BS(;C) (48)

For .# — 0, an expansion of (4.8) gives (X, y) ~ 0y(X)y+ ¢ 4 Tyzx(X)y(1—y*)+O(M*).
All terms which are O(.#*) or smaller may be shown to 1nclude factors (1 —y)" where
n = 2. It follows that

P, 1) ~ —=D(X) + L.2Dss(X)  as M — 0. (4.9)

The error in (4.9) is exponentially small for .# < 1, since all higher-order terms
vanish along y = 1.

Solutions of (4.7) are shown in figure 5. For .# < 1 the ridge is almost imper-
ceptible; as .# increases, a Reynolds ridge develops over an O(1) x- lengthscale The
approximation (4.9) turns out to be accurate for .# < 1 (that for .# = 2 is almost
indistinguishable from that in figure 5, for example). Since D ~ ¢* as X — —o0, we
can therefore estimate the critical value of .# above which the free surface rises with
X as M ~ ﬁ The ridge is noticeable for .# = 5, and pronounced for .# = 10.
Larger values of .# for fixed Z are obtained by reducing 7: however, once 7 is O(1)
or smaller it is necessary to know the detailed distribution of the O(1) downward
velocity at the leading edge of the Blasius boundary layer, which is beyond the scope
of this investigation.
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FIGURE 6. The velocity profiles of the integral model of §5.2. The normalized velocity profile
—V(y;a)/V(1;a) (see (5.3a,b)) is plotted for o = 1 (dashed), 3, 5, 10, 20 (dot-dashed). The solid line
shows the return-flow profile u = —3y2 + 2y.

5. Contaminant effects in the limit 1 < § ~ #Z < 1/e

Having described the limit ¢ = 5/ — 0, we now consider the full boundary-layer
problem (2.6)—(2.8) with ¢ = O(1). In this limit the regions shown in figure 3(a) are
no longer distinct, although much of this six-region asymptotic structure should be
recovered from what follows as ¢ falls in magnitude. Here we use a simple integral
approximation (§5.2), which allows a range of values of ¢ to be considered relatively
easily, and which allows us to bridge the gap between the singular limit considered in
§4 (with 1 < 7 < 2) and lubrication theory (for which 1 < 2 < 7). We aim to show
how the stress singularity first manifests itself as # is reduced from large values, by
generating (for example) local peaks in shear stress; this approach therefore parallels
§4 of Part 1. The model is motivated by the asymptotic structure of the flow far
upstream, which is considered first.

5.1. The linearized flow far upstream

For X — —oco, we can consider small perturbations to the oncoming plug flow. In
(2.6)-(2.8) we set P ~ y+ep'(y)e*™, p ~ ep/e®™, ' = ¢ +¢el''e”~ for some ¢ < 1 and
some o > 0. If we seek solutions at O(e), we must solve, for u'(y) = )|,

1
2.1 2.7 ’ / _ / _ / 2 ’
wu = —op +uy, /0 wdy=1, u(0)=0, wu,(l)=o"gu(l) (5.1a—d)

The following eigenvalue relation for the decay rate o’ is obtained from (5.1):

ocosh o — sinh o

S=We, W= o ot asinha]’
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FIGURE 7 (a,b). For caption see facing page.
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FIGURE 7 Solutions using an integral approximation (5.7b) of (2.6)—(2.8) for ¢ = (a) 1, (b) 0.1,
(c) 0.05, (d) 0.01. Plotted in each case are I" (solid; 10I" and 100 are plotted in ¢, d respectively),
ii; (dashed, ii; — 1 upstream), —I ; (dotted, —I'; — 4 downstream), —p, (dashed, —p. — 6
downstream). In each case the origin is chosen to be the maximum value of —iiiz, which is plotted

dot-dashed in (a) and (b); in (¢) and (d) this maximum is approximately 32.2 and 694 respectively.
Note that different X ranges are used in each figure.
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where W(oc) ~ 4/o? for o — 0 and W(oc) ~ 1/o as o — oo. The corresponding velocity
profile (plotted in figure 6 for various values of «) is given by

o — sinh «

') =pV(y; Viy;o) = —1 h —_—
G =P Vi) =1+ coshay + (2SI

> sinhay.  (5.3a,b)

For 7 > 1, (5.2), (5.3a,b) yield the return-flow lubrication-theory solution with
o ~d) g~ Pt (5P —y), W=l T =), T ==3p (S4a-d)

where p’ < 0. When ¢ is small, o is large and the velocity profile develops boundary
layers, evident in figure 6 and the approximation V ~ —1 + e % + ae=!7¥), These
boundary layers echo regions I and III in figure 3(a).

5.2. An integral approximation
Given the close resemblance between figures 2 and 6, we can use (5.3a,b) as the basis
of an integral approximation of (2.6)—(2.8). We set @i(X,y) = 1 — AV (y;o) for some
functions A(X), «(x). This profile satisfies j; it dy = 1 and ii[,—o = 1. The boundary
conditions (2.8b,c) give

occoshoc—sinhoc>’ il = 7. a3=1—A<

I:X=Aoc< 2—2coshoc—|—ocsmhoc)

cosho — 1 cosho — 1

(5.5a—¢)
where #i; = (X, 1). Since the integral form of (2.6) implies that for this velocity profile
the momentum flux is uniform, it is preferable to evaluate (2.6) along y = 0 and

y = 1, subtract to eliminate the pressure gradient (given by p; = ii),|,—o = —A«?) and
then

I asinho | 5

UsUgs = [uyy}o = Ao |:2 — Cosha—1:| = (US — 1) (56)

Eliminating A from (5.5a,¢), it follows that I = o> W (a)(1 — iis) where W is given by
(5.2). With (5.5b) and (5.6) the system is now closed and, remarkably, the two ODE’s
decouple to give a first-order system, which may be expressed either as

i = —o(1— ), @ =g/W(, I =g/ (5.7a)
or equivalently
P =T (1 — f) , = 72W(), a = % (5.7b)

Far upstream (X — —oo), with I' = ¢ + &I 'e*’, we recover the linearized solution of
§5.1. Far downstream (where Ao> ~ 6, « — 0 and I > 1), I'y ~ 4 at leading order,
as expected from lubrication theory.

A range of solutions of (5.7b) are shown in figure 7. In each case the pressure
distribution has a similar shape to the surfactant distribution. For large ¢ (¢« — 0),
(5.7b) simplifies to I'y ~ 4(1 — #/I), exactly as predicted by lubrication theory for
the contaminant transition region at the leading edge of a monolayer on a flat film
(compare figure 7a with ¢ = 1 to figure 2 of Part 1; see also equation (2.12) in
Part 1). The surface velocity #; falls monotonically, and there is a weak peak of
surface compression —ii;z. The maximum value of —ii; is 0.617 in figure 7(a) and
0.593 using the lubrication-theory approximation, a difference of less than 4%. The
negative surface stress —I'; and negative pressure gradient —p. rise smoothly to
their downstream values 4 and 6 respectively. If the level of contaminant is reduced
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(e.g. figure 7b, ¢ = 0.1), the lengthscale over which this change occurs is reduced,
and the degree of surface compression increases appreciably, although I'z and p.
remain monotonic. Further reduction in ¢, to 0.05 (figure 7c), greatly increases
the level of surface compression, and the shear stress distribution develops a weak
local maximum, although the pressure gradient remains monotonic. For # < 0.037
the pressure gradient has a local maximum. When ¢ = 0.01 (figure 7d), both the
shear stress and pressure gradients have strong local maxima over a very short
lengthscale, giving rise to strongly inflectional surfactant and pressure distributions.
The free-surface perturbation hy (see (2.2)) is therefore predicted to be inflectional for
4 < 0.037, having a shape similar to the monotonic pressure distribution sketched in
figure 3(b). Figure 7 therefore demonstrates how the stress singularity first begins to
manifest itself as § is reduced.

Figure 8(a) demonstrates how the lengthscale of the stress distribution depends
on ¢ ; there is a striking similarity with the purely viscous solution in figure 8(b) of
Part 1. Consistent with §4.1, as ¢ — 0 the stress peak scales like 1/ ¢, and the surface
compression like # 2, over an X-lengthscale 1/ jz After a corresponding rescaling,
using I = jG(x) X = fzic (5.7b) reduces to Gy = (G—1)/G*, which has the solution
1G‘H— ! G3+ G2+G—Hog(G 1) = X—X, where X is a constant. Figure 8(bh) shows the
correspondlng inner solution of the integral model, which is a reasonable qualitative
approximation of the asymptotically correct boundary-layer solution for region V’
shown in figure 4. The pressure gradient and the stress distribution (the larger peak in
figure 8b) are identical in this approximation. This inner solution matches downstream
onto an outer region (equivalent to region I in figure 3) in which I' > ¢ and the
free surface is nearly immobile, with I' ~ (4 #x)"/4. Although I" should scale in this
region like X!/2 as # — 0, this is only a modest deficiency and this simple integral
model provides an effective means of capturing the dominant features of solutions of
(2.6)—(2.8).

Finally, it is instructive to plot the the streamfunction in the frame of the wall
and the vorticity distribution when inertial forces are large, to show how the return-
flow streamlines are ‘closed’ beneath the tip of an advancing monolayer. Figure 9
shows these quantities computed using the integral approximation for the case ¢ =
0.03; the direction of the flow has been reversed, to allow direct comparison with
figure 4 of Part 1. Although the spreading monolayer does not have a well-defined
leading edge, there is a clear boundary beyond which it has no influence (although
we are here neglecting the weak upstream interaction associated with a Reynolds
ridge). Beneath the near-singularity in the vorticity distribution there is very strong
downward displacement of fluid. Streamwise variations in vorticity decay rapidly with
X, indicating (as anticipated in §3) that the boundary layers along y =0 and y = 1
grow rapidly across the fluid layer.

6. Discussion

By assuming that gravity strongly suppresses free-surface deformations (4 > 1),
and that suitable constraints apply to the monolayer speed, length and contaminant
strength (1 < (#,7) < 1/e), it has been possible to construct an asymptotically
uniform description of the flow near the tip of a spreading monolayer using quasi-
steady boundary-layer theory. At high Reynolds numbers the integrable tip singularity
has a profound effect on the local flow, even under conditions in which it is regularized
by weak contaminant. It gives rise, for example, to highly non-uniform surface shear-
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(@)

FIGURE 8. (a) The surface shear-stress distribution —I" ¢ computed using (5.7b) for ¢ = 5/% = 0.01
(dotted), 0.03, 0.05, 0.1, 0.3, 1, 5 (solid). (b) The local solution for the stress peak, plotting G =T"/ ¢
(solid), 30 Gx (upper peak), U = 1/G (dotted) and —30 Uy (lower peak).
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FIGURE 9. The streamfunction (a) and vorticity distribution (b) for the case # = 0.03, plotted versus
—X. The monolayer is advancing from left to right with respect to y = 0; the vorticity increases
linearly from —2 to +4 where there is a return flow.

stress distributions (e.g. figures 4b, 8a) which, like their purely viscous conterparts
(Part 1), vary over lengthscales much shorter than the monolayer length. Perhaps
the most striking manifestation of the singularity at high Reynolds numbers is the
generation of the thin-film analogue of a Reynolds ridge (figures 3b, 5), a small
hump at the free surface having length comparable to the undisturbed film thickness
H*, which arises from inertially generated pressure fluctuations associated with the
abrupt change in boundary conditions at the monolayer tip. This mechanism of film
deformation is quite distinct from that often described in the context of surfactant-
driven flows, in which deformations originate in spatially non-uniform fluxes of the
fluid layer (e.g. Gaver & Grotberg 1990; Jensen 1995).

One aim of the present study was to assess the accuracy of conventional thin-film
approximations of the length of a spreading localized monolayer. Lubrication theory
typically predicts that the leading-order monolayer length L; oc ¢** at time ¢* for
some 4 > 0 (e.g. Jensen & Grotberg 1992). Thus V* oc ALy/t", so that the condition
1 € # < 1/eisequivalent to T, < t* < T, /e where T, = p*H"?/u" is the timescale
for the vertical viscous diffusion of vorticity across the fluid layer. Within this time
window the inertial length correction is O(H*2), or more precisely

*

L7(t") ~ Li(") ( - i?ﬂ,fj‘ ) +O(H), (6.1)

where Y = Y/Z (see (2.4)) was estimated in §3 to be less than 0.1. We can therefore
assess the accuracy of the heuristic finite-depth model proposed in Jensen (1995),
which neglected the presence of the boundary layer along y = 0 (e.g. figure 1) and
assumed a relatively long development length on the H*Z%-scale, thereby predicting
that inertial effects remain significant over times of approximately 85T,. Despite
recent experimental evidence consistent with this simple model (de Ryck 1997), the
more sophisticated treatment here suggests that this estimate is (at least) an order
of magnitude too large, since according to (6.1) the time at which d(log L*)/d(logt")
is within 10% of A (the criterion used in Jensen 1995) is only %?T: < T, /4.
Inertial effects therefore decay substantially quicker than previously believed. The
very short development lengths make this asymptotic approach unreliable at only



320 O. E. Jensen

log y , 5~ P
U
5~ P2
QSL
<1 BEM log
SS+H
. L i~ gt

y<1

FIGURE 10. A schematic view of (log £, log §)-space, for a long monolayer (¢ < 1) on a flat film. The
evolution of a typical experiment along a line of constant §2 > 1 is illustrated with a thick arrow.
The abbreviations, explained in the text, denote the appropriate flow approximations in different
regions of parameter space.

moderately large values of %, however, so these predicitions should be confirmed by
full numerical treatment of the present flat-film problem, and of the other members
of the family of Navier—Stokes problems at the monolayer tip (see figure 3 in Part 1)
for which the film depth & > 1 and the horizontal flux Q = h — 1 > 0; such studies
will yield accurate development lengths, indications of stability (inflectional velocity
profiles can be anticipated if h > 1), and details of flows near the stress singularity.
Such calculations would also provide insights into the potentially rich range of (still
unexplored) interactions between inertial, gravitational and capillary forces acting at
the tip of a spreading monolayer on a deforming interface.

To help put the results of this study into context, figure 10 shows schematically the
different parameter regimes in the (log %, log 7)-plane considered here and in Part 1
for a monolayer spreading on a flat film. In a typical spreading experiment the speed
of advance of the monolayer tip falls, but the quantity 52 = p*H*S’ /u*> (a Suratman
number) remains constant. This corresponds to moving up a line of slope —1 in the
(log #,10g 5)-plane, as illustrated by the thick arrow in figure 10. This example, for
which 72 > 1, is readily achievable when one considers that for a 1 mm layer of
water, u2/p*H* ~ 1073g s72, which is at least four orders of magnitude smaller
than the mean interfacial surface tension of water. Ensuring that surface tension
fluctuations due to contaminant are substantially smaller than 10~3g s=2 presents a
significant technical challenge in any experiment.

The left-half-plane of figure 10 for which # < 1 was treated in Part 1: with
increasing §, the appropriate solution methods involved the viscous stick-slip flow
with Harper’s (1992) asymptotics (SS+H), a boundary-element solution (BEM), the
quasi-steady transition region obtainable by lubrication theory (QSL, figure 2 of
Part 1) and, once 7 ~ 1/e, the unsteady evolution (U) may be described using a
nonlinear diffusion equation ((2.9a) in Part 1). Detailed calculations in Part 1 showed
that the lubrication-theory approximation is accurate to within 4% for § > 1 when
R <L 1
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The introduction of inertia to the system complicates the picture substantially, and
our treatment is correspondingly less complete (see the right-half-plane of figure 10).
As long as § = O(1) or smaller, and 1 < # < 1/e, some part of the flow requires
solution of a Navier—Stokes problem, although over long lengthscales the picture
of the developing flow in §3 applies (see figures 1 and 2). For 7 < 1/%, Harper’s
(1992) purely viscous asymptotics may be used to regularize the stress singularity.
For 1 € § < # (the region denoted HD in figure 10), the canonical boundary-layer
problem treated approximately by Harper & Dixon (1974) and numerically in §4.1
(see figure 4) applies in a thin domain at the monolayer tip (region V' in figure 3),
smoothing the singularity at the tip of the subsurface Blasius boundary layer. As
7 increases further, the lengthscale over which contaminant smooths the singularity
increases, so that the flow may be described first by the boundary-layer equations
applying throughout the flow (when # = §/% = O(1), the region denoted BL in
figure 10), and then for larger § the purely viscous quasi-steady (QSL) or unsteady
(U) lubrication theory applies. The BL to QSL transition was explored using a
simple integral approximation of the boundary-layer equations (2.6)—(2.8) in §5; the
evolution of the surface stress distribution, for example, is shown in figure 8(a). The
model predicts, for example, that once ¢ > 0.05 approximately (figure 7, 8a) the
stress and the pressure gradient in the channel are both monotonic, so that the free
surface is non-inflectional (with a shape resembling the I'-curve in figure 7a). Our
calculations showed that lubrication theory achieves better than 4% accuracy for
J>1whenl <% < 1/e.

An important feature of the flow for 7 = O(%'/?) is the generation of the thin-film
version of a Reynolds ridge. Above the line 7 ~ #'/? in figure 10 the pressure and the
free-surface displacement remain monotonic functions of the streamwise coordinate
x, although for 1 < § < 0.052% the free surface has an inflection point near the
regularized singularity (much like the I' distribution in figure 7d). For sufficiently
rapidly spreading monolayers, however, there is an inviscid response beneath the
advancing monolayer tip which yields a short-lengthscale elevation of the free surface
(figure 5). The ridge exists for § < 371/4%'/2 approximately (§4.2). The shape of this
structure differs from predictions (by Harper & Dixon 1974, using thin-airfoil theory)
and observations (Scott 1982; Warncke, Gharib & Roesgen 1996) of the shape of
a ridge on infinitely deep fluid, since in the present case capillary effects may be
neglected, and the pressure distribution is strongly influenced by the presence of the
plane boundary, although both types of ridge share a relatively steep slope just behind
the monolayer tip.

In summary, despite the many limitations of this analysis it has been demonstrated
how the presence of a stress singularity, even when regularized by surface contaminant,
has a profound effect on the flow near the tip of a spreading monolayer, generating
a complex flow structure over lengthscales that are too short to be described by
conventional lubrication theory. As figure 10 demonstrates, the singularity’s effect is
felt most strongly when the monolayer is spreading fast enough for inertial effects
to be significant near the monolayer tip, in which case it may generate a thin-film
Reynolds ridge. Experimental verification of the predictions of this theory are keenly
awaited.

REFERENCES

BaDR, H., DENNIS, S. C. R., BATEs, S. & SmitH, F. T. 1985 Numerical and asymptotic solutions for
merging flow through a channel with an upstream splitter plate. J. Fluid Mech. 156, 63-81.
BorGas, M. S. & GROTBERG, J. B. 1988 Monolayer flow on a thin film. J. Fluid Mech. 193, 151-170.



322 O. E. Jensen

CARRIER, G. F. & LiN, C. C. 1948 On the nature of the boundary layer near the leading edge of a
flat plate. Q. Appl. Maths 6, 63—68.

Fopa, M. & Cox, R. G. 1980 The spreading of thin liquid films on a water-air interface. J. Fluid
Mech. 101, 33-51.

GAVER, D. P. III & GROTBERG, J. B. 1990 The dynamics of localized surfactant on a thin film.
J. Fluid Mech. 213, 127-148.

GROTBERG, J. B. 1994 Pulmonary flow and transport phenomena. Ann. Rev. Fluid Mech. 26, 529-571.

HARPER, J. F. 1992 The leading edge of an oil slick, soap film, or bubble stagnant cap in Stokes
flow. J. Fluid Mech. 237, 23-32.

HARPER, J. F. & Dixon, J. N. 1974 The leading edge of a surface film on contaminated water. Proc.
Fifth Australasian Conf. Hydraulics Fluid Mech., Christchurch, NZ, vol. 2, pp. 499-505.

JENSEN, O. E. 1995 The spreading of insoluble surfactant at the free surface of a deep fluid layer.
J. Fluid Mech. 293, 349-378.

JENSEN, O. E. & GROTBERG, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock
evolution and film rupture. J. Fluid Mech. 240, 259-288.

JENSEN, O. E. & HALPERN, D. 1998 The stress singularity in surfactant-driven thin-film flows. Part 1.
Viscous effects. J. Fluid Mech. 372, 273-300.

Ryck, A. DE 1997 Fragmentation of a spreading drop. Europhys. Lett. 40, 305-310.

SCHLICHTING, H. 1968 Boundary-Layer Theory. McGraw-Hill

Scorr, J. C. 1982 Flow beneath a stagnant film on water: the Reynolds ridge. J. Fluid Mech. 116,
283-296.

Smith, F. T. 1977 Steady motion through a branching tube. Proc. R. Soc. Lond. A 355, 167-187.

SNEDDON, 1. N. 1974 The Use of Integral Transforms. p. 94. McGraw Hill

STOCKER, J. R. & Duck, P. W. 1995 Stationary perturbations of Couette—Poiseuille flow: the flow
development in long cavities and channels. J. Fluid Mech. 292, 153-182.

TAYLER, A. B. 1973 Singularities at flow separation points. Q. J. Mech. Appl. Maths 26, 153—172.

Tuck, E. O. & BenTwicH, M. 1983 Sliding sheets: lubrication with comparable viscous and inertia
forces. J. Fluid Mech. 135, 51-69.

VAN DyYKE, M. 1971 Entry flow in a channel. J. Fluid Mech. 44, 813-823.

VOOREN, A. I. vaN DE & DuKSTRA, D. 1970 The Navier—Stokes solution for laminar flow past a
semi-infinite plate. J. Engng Maths 4, 9-27.

WARNCKE, A., GHARIB, M. & ROESGEN, T. 1996 Flow measurements near a Reynolds ridge. Trans.
ASME J. Fluids Engng 118, 621-624.

WiLson, S.K. & Durry, B.R. 1998 On lubrication with comparable viscous and inertia forces.
Q. J. Mech. Appl. Maths 51, 105-124.



